Take our Survey

Reference: Gu J, et al. (1997) Small heat shock protein suppression of Vpr-induced cytoskeletal defects in budding yeast. Mol Cell Biol 17(7):4033-42

Reference Help

Abstract

Expression of the auxiliary human immunodeficiency virus type 1 (HIV-1) protein Vpr causes arrest of primate host cells in G2. Expression of this protein in budding yeast has been previously reported to cause growth arrest and a large-cell phenotype. Investigation of the effect of Vpr expression in budding yeast, reported here, showed that it causes disruption of the actin cytoskeleton. Expression of HSP42, the gene for a small heat shock protein (sHSP), from a high-copy-number plasmid reversed this effect. The sHSPs are induced by exposure of cells to thermal, osmotic, and oxidative stresses and to mitogens. In animal cells, overexpression of sHSPs causes increased resistance to stress and stabilization of actin stress fibers. Yeast cells subjected to mild stress, such as shifting from 23 to 39 degrees C, arrest growth and then resume cell division. Growth arrest is accompanied by transient disorganization of the cytoskeleton. Yeast in which the HSP42 gene was disrupted and which was subjected to moderate thermal stress reorganized the actin cytoskeleton more slowly than did wild-type control cells. These results demonstrate that in yeast, as in metazoan cells, sHSPs promote maintenance of the actin cytoskeleton.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Gu J, Emerman M, Sandmeyer S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference