Reference: Nikoloff DM and Henry SA (1994) Functional characterization of the INO2 gene of Saccharomyces cerevisiae. A positive regulator of phospholipid biosynthesis. J Biol Chem 269(10):7402-11

Reference Help

Abstract

The INO2 locus encodes a novel product showing structural similarity to the basic helix-loop-helix (b-HLH) family of regulatory proteins (Nikoloff, D.M., McGraw, P., and Henry, S.A. (1992) Nucleic Acids Res. 20, 3253). The ino2 mutants exhibit pleiotropic defects in phospholipid metabolism including inability to derepress the biosynthetic enzyme inositol-1-phosphate synthase. Localization of mutations in ino2 strains has demonstrated that the b-HLH domain is required for biological activity and is sensitive to perturbation, thereby establishing a correlation between the structure and function of Ino2p. Defects in the b-HLH domain of Ino2p resulted in reduced DNA binding activity. In addition, the absence of a specific DNA-protein complex correlated with a reduction or loss of INO1 transcription. Studies using Ino2p-specific antibody revealed that Ino2p participates in the formation of specific DNA-protein complexes. Ino2p-dependent binding activity overlapped with a region of the INO1 promoter that contains two potential HLH consensus binding sites. Furthermore, Ino2p showed single base pair discrimination in a putative binding site, establishing a relationship between Ino2p and its target binding site.

Reference Type
Journal Article
Authors
Nikoloff DM, Henry SA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference