Reference: Heil-Chapdelaine RA, et al. (2000) Dynein-dependent movements of the mitotic spindle in Saccharomyces cerevisiae Do not require filamentous actin. Mol Biol Cell 11(3):863-72

Reference Help

Abstract


In budding yeast, the mitotic spindle is positioned in the neck between the mother and the bud so that both cells inherit one nucleus. The movement of the mitotic spindle into the neck can be divided into two phases: (1) Kip3p-dependent movement of the nucleus to the neck and alignment of the short spindle, followed by (2) dynein-dependent movement of the spindle into the neck and oscillation of the elongating spindle within the neck. Actin has been hypothesized to be involved in all these movements. To test this hypothesis, we disrupted the actin cytoskeleton with the use of mutations and latrunculin A (latrunculin). We assayed nuclear segregation in synchronized cell populations and observed spindle movements in individual living cells. In synchronized cell populations, no actin cytoskeletal mutant segregated nuclei as poorly as cells lacking dynein function. Furthermore, nuclei segregated efficiently in latrunculin-treated cells. Individual living cell analysis revealed that the preanaphase spindle was mispositioned and misaligned in latrunculin-treated cells and that astral microtubules were misoriented, confirming a role for filamentous actin in the early, Kip3p-dependent phase of spindle positioning. Surprisingly, mispositioned and misaligned mitotic spindles moved into the neck in the absence of filamentous actin, albeit less efficiently. Finally, dynein-dependent sliding of astral microtubules along the cortex and oscillation of the elongating mitotic spindle in the neck occurred in the absence of filamentous actin.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Heil-Chapdelaine RA, Tran NK, Cooper JA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference