Take our Survey

Reference: Lim HH, et al. (1998) Cdc20 is essential for the cyclosome-mediated proteolysis of both Pds1 and Clb2 during M phase in budding yeast. Curr Biol 8(4):231-4

Reference Help

Abstract

Chromosome separation during the cell-cycle transition from metaphase to anaphase requires the proteolytic destruction of anaphase inhibitors such as Pds1 [1-3]. Proteolysis of Pds1 is mediated by a ubiquitin-protein ligase, the anaphase-promoting complex (APC) or cyclosome [4,5]. The APC is also necessary for the ubiquitin-dependent degradation of mitotic cyclins in late telophase as cells exit mitosis [6-9]. Although phosphorylation seems to be involved [10], it is not clear what activates the APC at the onset of anaphase. In Saccharomyces cerevisiae, chromosome segregation also requires the CDC20 gene, whose product contains WD40 repeats [11,12]. We have investigated the functional relationship between the APC and the Cdc20 protein. We present evidence that strongly suggests that Cdc20 is an essential regulator of APC-dependent proteolysis such that in the absence of Cdc20, cells are unable to degrade either Pds1 at the onset of anaphase or the mitotic cyclin Clb2 during telophase. This notion is consistent with our observations that Cdc20 is localized in the nucleus and co-immunoprecipitates with an APC component, Cdc23.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lim HH, Goh PY, Surana U
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference