Reference: Durnez P, et al. (1994) Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins. Yeast 10(8):1049-64

Reference Help

Abstract


Addition of a nitrogen-source to glucose-repressed, nitrogen-starved G0 cells of the yeast Saccharomyces cerevisiae in the presence of a fermentable carbon source induces growth and causes within a few minutes a five-fold, protein-synthesis-independent increase in the activity of trehalase. Nitrogen-activated trehalase could be deactivated in vitro by alkaline phosphatase treatment, supporting the idea that the activation is triggered by phosphorylation. Yeast strains containing only one of the three TPK genes (which encode the catalytic subunit of cAMP-dependent protein kinase) showed different degrees of nitrogen-induced trehalase activation. The order of effectiveness was different from that previously reported for glucose-induced activation of trehalase in glucose-depressed yeast cells. Further reduction of TPK-encoded catalytic subunit activity by partially inactivating point mutations in the remaining TPK gene further diminished nitrogen-induced trehalase activation, while deletion of the BCY1 gene (which encodes the regulatory subunit) in the same strains resulted in an increase in the extent of activation. Deletion of the RAS genes in such a tpkw1 bcy1 strain had no effect. These results are consistent with mediation of nitrogen-induced trehalase activation by the free catalytic subunits alone. They support our previous conclusion that cAMP does not act as second messenger in this nitrogen-induced activation process and our suggestion that a novel nitrogen-induced signaling pathway integrates with the cAMP pathway at the level of the free catalytic subunits of protein kinase A. Western blot experiments showed that the differences in the extent of trehalase activation were not due to differences in trehalase expression. On the other hand, we cannot completely exclude that protein kinase A influences the nitrogen-induced activation mechanism itself rather than acting directly on trehalase. However, any such alternative explanation requires the existence of an additional, yet unknown, mechanism for activation of trehalase besides the well-established regulation by protein kinase A.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Durnez P, Pernambuco MB, Oris E, Argüelles JC, Mergelsberg H, Thevelein JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference