Reference: Sorensen SO, et al. (1994) pH-dependent processing of yeast procarboxypeptidase Y by proteinase A in vivo and in vitro. Eur J Biochem 220(1):19-27

Reference Help

Abstract

Carboxypeptidase Y is a vacuolar enzyme from Saccharomyces cerevisiae. It enters the vacuole as a zymogen, procarboxypeptidase Y, which is immediately processed in a reaction involving two endoproteases, proteinase A and proteinase B. We have investigated the in vitro activation of purified procarboxypeptidase Y by purified proteinase A. This has identified two different processing intermediates; one active and one inactive. The intermediates define a 33 amino acid segment of the 91 amino acid propeptide as sufficient for maintaining the enzyme in an inactive state. The inactive intermediate was isolated from a processing reaction at neutral pH. In order to investigate the influence of vacuolar pH on processing in vivo, the autoactivation of proteinase A and its processing of procarboxypeptidase Y were studied in a vma2 prb1 mutant, which is deficient in vacuolar acidification and proteinase B activity. Efficient processing of procarboxypeptidase Y in the absence of proteinase B is dependent on acidic vacuolar pH, and the processing at neutral pH is slow and takes place in two steps similar to those identified in vitro.

Reference Type
Journal Article
Authors
Sorensen SO, van den Hazel HB, Kielland-Brandt MC, Winther JR
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference