Take our Survey

Reference: Chaudhuri B, et al. (1997) apd1+, a gene required for red pigment formation in ade6 mutants of Schizosaccharomyces pombe, encodes an enzyme required for glutathione biosynthesis: a role for glutathione and a glutathione-conjugate pump. Genetics 145(1):75-83

Reference Help

Abstract


Mutants in the adenine biosynthetic pathway of yeasts (ade1 and ade2 of Saccharomyces cerevisiae, ade6 and ade7 of Schizosaccharomyces pombe) accumulate an intense red pigment in their vacuoles when grown under adenine-limiting conditions. The precise events that determine the formation of the pigment are however, still unknown. We have begun a genetic investigation into the nature and cause of pigmentation of ade6 mutants of S. pombe and have discovered that one of these pigmentation defective mutants, apd1 (adenine pigmentation defective), is a strict glutathione auxotroph. The gene apd1+ was found to encode the first enzyme in glutathione biosynthesis, gamma-glutamylcysteine synthetase, gcs1+. This gene when expressed in the mutant could confer both glutathione prototrophy and the characteristic red pigmentation, and disruption of the gene led to a loss in both phenotypes. Supplementation of glutathione in the medium, however, could only restore growth but not the pigmentation because the cells were unable to achieve sufficient intracellular levels of glutathione. Disruption of the second enzyme in glutathione biosynthesis, glutathione synthetase gsh2+, also led to glutathione auxotrophy, but only a partial defect in pigment formation. A reevaluation of the major amino acids previously reported to be present in the pigment indicated that the pigment is probably a glutathione conjugate. The ability of vanadate to inhibit pigment formation indicated that the conjugate was transported into the vacuole through a glutathione-conjugate pump. This was further confirmed using strains of S. cerevisiae bearing disruptions in the recently identified glutathione-conjugate pump, YCF1, where a significant reduction in pigment formation was observed. The pump of S. pombe is distinct from the previously identified vacuolar pump, hmt1p, for transporting cadystin peptides into vacuoles of S. pombe.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chaudhuri B, Ingavale S, Bachhawat AK
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference