Reference: Santos-Rosa H, et al. (1996) The yeast HRS1 gene encodes a polyglutamine-rich nuclear protein required for spontaneous and hpr1-induced deletions between direct repeats. Genetics 142(3):705-16

Reference Help

Abstract


The hrs1-1 mutation was isolated as an extragenic suppressor of the hyperrecombination phenotype of hpr1 delta cells. We have cloned, sequenced and deleted from the genome the HRS1 gene. The DNA sequence of the HRS1 gene reveals that it is identical to PGD1, a gene with no reported function, and that the Hrs1p protein contains polyglutamine stretches typically found in transcription factors. We have purified a His(6) tagged version of Hrs1p protein from E. coli and have obtained specific anti-Hrs1p polyclonal antibodies. We show that Hrs1p is a 49-kD nuclear protein, as determined by indirect immunofluorescence microscopy and Western blot analysis. The hrs1 delta null mutation reduces the frequency of deletions in wild-type and hpr1 delta backgrounds sevenfold below wild-type and rad52 levels. Furthermore, hrs1 delta cells show reduced induction of the GAL1,10 promoter relative to wild-type cells. Our results suggest that Hrs1p is required for the formation of deletions between direct repeats and that it may function in gene expression. This suggests a connection between gene expression and direct repeat recombination. In this context, we discuss the possible roles of Hrs1p and Hpr1p in initiation of direct-repeat recombination.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Santos-Rosa H, Clever B, Heyer WD, Aguilera A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference