Reference: Vivier MA, et al. (1997) Coregulation of starch degradation and dimorphism in the yeast Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 32(5):405-35

Reference Help

Abstract


Saccharomyces cerevisiae, the exemplar unicellular eukaryote, can only survive and proliferate in its natural habitats through constant adaptation within the constraints of a dynamic ecosystem. In every cell cycle of S. cerevisiae, there is a short period in the G1 phase of the cell cycle where "sensing" transpires; if a sufficient amount of fermentable sugars is available, the cells will initiate another round of vegetative cell division. When fermentable sugars become limiting, the yeast can execute the diauxic shift, where it reprograms its metabolism to utilize nonfermentable carbon sources. S. cerevisiae can also initiate the developmental program of pseudohyphal formation and invasive growth response, when essential nutrients become limiting. S. cerevisiae shares this growth form-switching ability with important pathogens such as the human pathogen, Candida albicans, and the corn smut pathogen Ustilago maydis. The pseudohyphal growth response of S. cerevisiae has mainly been implicated as a means for the yeast to search for nutrients. An important observation made was that starch-degrading S. cerevisiae strains have the added ability to form pseudohyphae and grow invasively into a starch-containing medium. More significantly, it was also shown that the STA1-3 genes encoding three glucoamylase isozymes responsible for starch hydrolysis in S. cerevisiae are coregulated with a gene, MUC1, essential for pseudohyphal and invasive growth. At least two putative transcriptional activators, Mss10p and Mss11p, are involved in this regulation. The Muc1p is a putative integral membrane-bound protein similar to mammalian mucin-like proteins that have been implicated in the ability of cancer cells to invade other tissues. This provided us with an excellent example of integrative control between nutrient sensing, signaling, and differential development.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Vivier MA, Lambrechts MG, Pretorius IS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference