Reference: Gerlach VL, et al. (1995) TFIIIB placement on a yeast U6 RNA gene in vivo is directed primarily by TFIIIC rather than by sequence-specific DNA contacts. Mol Cell Biol 15(3):1455-66

Reference Help

Abstract

The Saccharomyces cerevisiae U6 RNA gene (SNR6), which is transcribed by RNA polymerase III, has an unusual combination of promoter elements: an upstream TATA box, an intragenic A block, and a downstream B block. In tRNA genes, the A and B blocks are binding sites for the transcription initiation factor TFIIIC, which positions TFIIIB a fixed distance upstream of the A block. However, in vitro transcription of SNR6 with purified components requires neither TFIIIC nor the A and B blocks, presumably because TFIIIB recognizes the upstream sequences directly. Here we demonstrate that TFIIIB placement on SNR6 in vivo is directed primarily by the TFIIIC-binding elements rather than by upstream sequences. We show that the A block is a stronger start site determinant than the upstream sequences when the two are uncoupled by an insertion mutation. Furthermore, while TFIIIC-independent in vitro transcription of SNR6 is highly sensitive to TATA box point mutations, in vivo initiation on SNR6 is only marginally sensitive to such mutations unless the A block is mutated. Intriguingly, a deletion downstream of the U6 RNA coding region that reduces A-to-B block spacing also increases in vivo dependence on the TATA box. Moreover, this deletion results in the appearance of micrococcal nuclease-hypersensitive sites in the TFIIIB chromatin footprint, indicating that TFIIIB binding is disrupted by a mutation 150 bp distant. This and additional chromatin footprinting data suggest that SNR6 is assembled into a nucleoprotein complex that facilitates the TFIIIC-dependent binding of TFIIIB.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
Gerlach VL, Whitehall SK, Geiduschek EP, Brow DA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference