Take our Survey

Reference: Sellers JW, et al. (1990) Mutations that define the optimal half-site for binding yeast GCN4 activator protein and identify an ATF/CREB-like repressor that recognizes similar DNA sites. Mol Cell Biol 10(10):5077-86

Reference Help

Abstract


The yeast GCN4 transcriptional activator protein binds as a dimer to a dyad-symmetric sequence, indicative of a protein-DNA complex in which two protein monomers interact with adjacent half-sites. However, the optimal GCN4 recognition site, ATGA(C/G)TCAT, is inherently asymmetric because it contains an odd number of base pairs and because mutation of the central C.G base pair strongly reduces specific DNA binding. From this asymmetry, we suggested previously that GCN4 interacts with nonequivalent and possibly overlapping half-sites (ATGAC and ATGAG) that have different affinities. Here, we examine the nature of GCN4 half-sites by creating symmetrical derivatives of the optimal GCN4 binding sequence that delete or insert a single base pair at the center of the site. In vitro, GCN4 bound efficiently to the sequence ATGACGTCAT, whereas it failed to bind to ATGAGCTCAT or ATGATCAT. These observations strongly suggest that (i) GCN4 specifically recognizes the central base pair, (ii) the optimal half-site for GCN4 binding is ATGAC, not ATGAG, and (iii) GCN4 is a surprisingly flexible protein that can accommodate the insertion of a single base pair in the center of its compact binding site. The ATGACGTCAT sequence strongly resembles sites bound by the yeast and mammalian ATF/CREB family of proteins, suggesting that GCN4 and the ATF/CREB proteins recognize similar half-sites but have different spacing requirements. Unexpectedly, in the context of the his3 promoter, the ATGACGTCAT derivative reduced transcription below the basal level in a GCN4-independent manner, presumably reflecting DNA binding by a distinct ATF/CREB-like repressor protein. In other promoter contexts, however, the same site acted as a weak upstream activating sequence.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Sellers JW, Vincent AC, Struhl K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference