Take our Survey

Reference: Louis EJ and Borts RH (1995) A complete set of marked telomeres in Saccharomyces cerevisiae for physical mapping and cloning. Genetics 139(1):125-36

Reference Help

Abstract

Each telomere in a single strain (S288C) of Saccharomyces cerevisiae was marked with a URA3 containing integrating vector having telomeric TG1-3 sequences. Efficiency of integrative transformation was enhanced by creating single random double-strand breaks in the integrating vector using DNAseI in the presence of Mn2+ ions. A total of 327 transformants were screened by CHEF gels of intact chromosomal DNA. Transformants with homology to the vector at particular chromosomal bands were then screened by Southern analysis with several restriction enzymes to confirm telomeric locations. CHEF gels of NotI and/or SfiI digests were also analyzed to determine left or right arm locations. In some cases allelism of marked telomeres was determined genetically. Transformation was performed by lithium acetate and electroporation with varying results. Electroporation resulted in 50% (75/150) of the integrants at the internal URA3 location rather than telomeres. There were also two rearrangements involving URA3 and the telomere of another chromosome. Lithium acetate transformation resulted in fewer integrants at the internal URA3 location (5/84) and no rearrangements. All telomeres were marked with approximately the same efficiency ranging from 0 to 11 hits in the first 240 transformants. These marked telomeres can be used to complete the physical maps of chromosomes in which the telomere regions are absent. The marked telomeres can be cloned with the appropriate restriction enzymes, thus completing the cloning of individual chromosomes for sequencing projects. The analysis of these clones will lead to a better understanding of telomere region biology. The methodology can also be applied to telomeres of other organisms once they are cloned as telomeric YACs.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Louis EJ, Borts RH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference