Take our Survey

Reference: Haas A, et al. (1995) The GTPase Ypt7p of Saccharomyces cerevisiae is required on both partner vacuoles for the homotypic fusion step of vacuole inheritance. EMBO J 14(21):5258-70

Reference Help

Abstract

In the budding yeast Saccharomyces cerevisiae, vacuoles are inherited by the projection of vesicles and tubules from the mother-cell vacuole into the growing daughter cell during the S phase. These vesicles then fuse and form the daughter-cell organelle. We have described previously in vitro reactions of the formation of vacuole-derived segregation structures and of vacuole-vacuole fusion. Homotypic vacuole fusion requires cytosol, ATP and a physiological temperature, and is sensitive to GTPase inhibitors. These reactions are divisible into early stages which require ATP and cytosol, and late stages which require neither. Here, we report that Ypt7p, a ras-like GTPase implicated previously in endocytosis in yeast, is largely localized to the vacuole and is required on both partners during the in vitro vacuole fusion reaction. The in vitro fusion reaction is inhibited either by Gdi1p, which extracts the GDP-bound form of ras-like GTPases from membranes, or by antibodies specific for Ypt7p. The presence of anti-Ypt7p during the early stages of the reaction inhibits the development of cytosol- and ATP-independent intermediates. Although cytosol and ATP are no longer needed for the late stage of vacuole inheritance in vitro, the inhibition of this late stage by anti-Ypt7p or Gdi1p requires the continued presence of ATP and cytosol. Ypt7p is the first GTPase for which a direct role in organelle inheritance has been established.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Haas A, Scheglmann D, Lazar T, Gallwitz D, Wickner W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference