Reference: Harrison MA, et al. (1994) Functional properties of a hybrid vacuolar H(+)-ATPase in Saccharomyces cells expressing the Nephrops 16-kDa proteolipid. Eur J Biochem 221(1):111-20

Reference Help

Abstract


The hydrophobic 16-kDa polypeptide which forms gap-junction-like structures in the crustacean Nephrops norvegicus is a member of a highly conserved family of proteolipids involved in a variety of membrane transport functions in eukaryotic cells. This family also includes the product of the Saccharomyces cerevisiae VMA3 gene which encodes an integral membrane component of the vacuolar membrane H(+)-ATPase. The cDNA for the Nephrops proteolipid complements a mutation in the yeast VMA3 gene, resulting in assembly of a hybrid H(+)-ATPase comprising yeast catalytic subunits and Nephrops integral membrane components. The hybrid vacuolar ATPase was capable of ATP hydrolysis which was coupled to proton translocation and showed inhibitor binding and enzymological properties similar to those of wild-type V-ATPases (Km for ATP, 0.4 mM), suggesting that both yeast and crustacean proteolipids share conserved structure at regions of protein interaction. To facilitate isolation of the Nephrops proteolipid by affinity chromatography on a Ni(2+)-binding support, six C-terminal histidine residues were added to the proteolipid. This modification did not prohibit assembly into the hybrid H(+)-ATPase, although the resultant enzyme did have a markedly elevated Km (1.8 mM). The membrane-bound Vo sector of the ATPase was isolated by the affinity-chromatography procedure and reconstituted into synthetic vesicles. This complex was found to be impermeable to small cations in the absence of catalytic ATPase subunits either in situ in the vacuolar membrane or in the reconstituted system. The functional significance of this impermeability and the structure/function relationships between proteolipids from different sources are discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Harrison MA, Jones PC, Kim YI, Finbow ME, Findlay JB
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference