Take our Survey

Reference: Craig EA and Jacobsen K (1985) Mutations in cognate genes of Saccharomyces cerevisiae hsp70 result in reduced growth rates at low temperatures. Mol Cell Biol 5(12):3517-24

Reference Help

Abstract

Expression of two Saccharomyces cerevisiae genes (YG101 and YG103) that are related to the gene encoding inducible 70K protein (hsp70) is repressed upon heat shock. Mutations of the two genes were constructed in vitro and substituted into the yeast genome in place of the wild-type alleles. No phenotypic effect of single mutations of either gene was detected. However, cells containing both YG101 and YG103 mutations showed altered growth properties; double-mutation cells possess an optimal growth temperature of 37 degrees C rather than 30 degrees C and grow increasingly poorly as the temperature is lowered. Mutations of two other members of this hsp70-related multigene family, YG100 and YG102, have been analyzed (E. A. Craig and K. Jacobsen, Cell 38:841-849, 1984). Cells containing both YG100 and YG102 mutations cannot form colonies at 37 degrees C. Fusions between the YG101 and YG102 promoter regions and the YG100 and YG101 structural genes, respectively, were constructed. The YG101 promoter-YG100 structural gene fusion was not able to restore normal growth properties to the yg101- yg103- mutant. Also, yg100- yg102- cells containing the YG102 promoter-YG101 structural gene fusion were unable to grow at 37 degrees C. Failure of the protein products of related genes to rescue the relative cold sensitivity of growth suggests that members of the hsp70 multigene family are functionally distinct.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Craig EA, Jacobsen K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference