Take our Survey

Reference: Abovich N, et al. (1985) Effect of RP51 gene dosage alterations on ribosome synthesis in Saccharomyces cerevisiae. Mol Cell Biol 5(12):3429-35

Reference Help

Abstract


The Saccharomyces cerevisiae ribosomal protein rp51 is encoded by two interchangeable genes, RP51A and RP51B. We altered the RP51 gene dose by creating deletions of the RP51A or RP51B genes or both. Deletions of both genes led to spore inviability, indicating that rp51 is an essential ribosomal protein. From single deletion studies in haploid cells, we concluded that there was no intergenic dosage compensation at the level of mRNA abundance or mRNA utilization (translational efficiency), although phenotypic analysis had previously indicated a small compensation effect on growth rate. Similarly, deletions in diploid strains indicated that no strong mechanisms exist for intragenic dosage compensation; in all cases, a decreased dose of RP51 genes was characterized by a slow growth phenotype. A decreased dose of RP51 genes also led to insufficient amounts of 40S ribosomal subunits, as evidenced by a dramatic accumulation of excess 60S ribosomal subunits. We conclude that inhibition of 40S synthesis had little or no effect on the synthesis of the 60S subunit components. Addition of extra copies of rp51 genes led to extra rp51 protein synthesis. The additional rp51 protein was rapidly degraded. We propose that rp51 and perhaps many ribosomal proteins are normally oversynthesized, but the unassembled excess is degraded, and that the apparent compensation seen in haploids, i.e., the fact that the growth rate of mutant strains is less depressed than the actual reduction in mRNA, is a consequence of this excess which is spared from proteolysis under this circumstance.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Abovich N, Gritz L, Tung L, Rosbash M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference