Reference: Kukuruzinska MA and Lennon-Hopkins K (1999) ALG gene expression and cell cycle progression. Biochim Biophys Acta 1426(2):359-72

Reference Help

Abstract


The evolutionarily conserved ALG genes function in the dolichol pathway in the synthesis of the lipid-linked oligosaccharide precursor for protein N-glycosylation. Increasing evidence suggests a role for these genes in the cell cycle. In Saccharomyces cerevisiae, coordinate regulation of the ALG genes makes up the primary genomic response to growth stimulation; several features of the ALG genes' expression resemble mammalian early growth response genes. However, only the first gene in the pathway, ALG7, is downregulated in response to an antimitogenic signal that leads to cell cycle arrest and differentiation, suggesting that selective inhibition of the first gene may be sufficient to regulate the dolichol pathway for the withdrawal from the cell cycle. The availability of mutants in the early essential ALG genes has established functional relationships between these genes' expression and G1/S transition, budding, progression through G2 and withdrawal from the cell cycle. Analysis of the regulation of ALG7 has provided insights into how this gene's expression is controlled at the molecular level. Recent studies have also begun to reveal how ALG7 expression is linked to cell cycle arrest in response to antimitogenic cues and have identified G1 cyclins as some of its downstream targets. Since the functions of the ALG genes appear to be as conserved among eukaryotes as the cell cycle machinery, it is likely that these genes play a similar role in mammalian cell proliferation and differentiation.

Reference Type
Journal Article | Review | Review, Tutorial
Authors
Kukuruzinska MA, Lennon-Hopkins K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference