Take our Survey

Reference: Tortora P, et al. (1984) Studies on glucose-induced inactivation of gluconeogenetic enzymes in adenylate cyclase and cAMP-dependent protein kinase yeast mutants. Eur J Biochem 145(3):543-8

Reference Help

Abstract


Glucose-induced inactivation of the gluconeogenetic enzymes fructose-1,6-biphosphatase, cytoplasmic malate dehydrogenase and phosphoenolpyruvate carboxykinase was tested in yeast mutants defective in adenylate cyclase (cyr1 mutation) and in the cAMP-binding subunit of cAMP-dependent protein kinase (bcy 1 mutation). In the mutant AM7-11D (cyr1 mutation), glucose-induced cAMP overshoot was absent, and no significant inactivation of the gluconeogenetic enzymes was detected, thus supporting the role of cAMP in the process. Moreover, in the mutant AM9-8B (bcy1 mutation), no cAMP-dependent protein kinase activity was evidenced, and, in addition, a normal inactivation pattern was observed, thus indicating that other mechanisms evoked by glucose might be required in the process. In the double mutant AM7-11DR-4 (cyr1 bcy1 mutations), no inactivating effect was triggered by the sugar: this suggests that cAMP exerts some additional effect on the process, besides the activation of cAMP-dependent protein kinase. Furthermore, in AM7-11D, extracellular cAMP triggered about 50% of inactivation of fructose-1,6-bisphosphatase; this effect was largely reversed in acetate medium plus cycloheximide even after 150 min of incubation. However, an extensive and essentially irreversible inactivation was evidenced in the presence of glucose plus cAMP, whereas glucose alone was only slightly effective. Therefore, the reversible effect of cAMP, which probably corresponds to enzyme phosphorylation, seems to be required for the irreversible, probably proteolytic, glucose-stimulated inactivation of this enzyme. Cytoplasmic malate dehydrogenase and phosphoenolpyruvate carboxykinase in AM7-11D were also inactivated by cAMP, and much more by glucose plus cAMP, whereas glucose was practically ineffective. However, reversibility of the effect was not detected, and, in addition, no phosphorylation of phosphoenolpyruvate carboxykinase could be evidenced. Therefore, the sugar quite probably stimulates proteolysis of these enzymes, but the mechanism of cAMP in their degradation has still to be defined.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tortora P, Burlini N, Caspani G, Guerritore A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference