Take our Survey

Reference: Caprioglio DR, et al. (1993) Isolation and characterization of AAP1. A gene encoding an alanine/arginine aminopeptidase in yeast. J Biol Chem 268(19):14310-5

Reference Help

Abstract

The yeast AAP1 gene, encoding a putative amino-peptidase, was isolated based on its ability to suppress the temperature-sensitive growth on nonfermentable carbon sources of spr5, a stationary phase regulatory mutant. AAP1 was physically mapped to chromosome VIII between PUT2 and CUP1. Sequence analysis of the AAP1 gene showed a 1581-nucleotide open reading frame capable of encoding a 59-kilodalton protein. The protein encoded by this open reading frame exhibits approximately 40% sequence identity to human, rat, and mouse aminopeptidases. In limited regions, sequence identity between Aap1 and the mammalian aminopeptidases ranges from 53% to 93%. Insertional inactivation of the AAP1 gene resulted in a decrease in glycogen accumulation and the loss of the major band of arginine/alanine aminopeptidase activity. Strains carrying the AAP1 gene on a high copy plasmid show an increase in the major arginine/alanine aminopeptidase activity, a dramatic increase in glycogen accumulation, and an increase in transcription from a vector carrying lacZ fused to the promoter of a gene (SSA3) expressed during post-diauxic and stationary phases of the culture cycle. We conclude that although the AAP1 gene is not essential for viability, the Aap1 protein positively affects glycogen accumulation in yeast.

Reference Type
Journal Article
Authors
Caprioglio DR, Padilla C, Werner-Washburne M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference