Reference: Sakurai H and Fukasawa T (1998) Functional correlation among Gal11, transcription factor (TF) IIE, and TFIIH in Saccharomyces cerevisiae. Gal11 and TFIIE cooperatively enhance TFIIH-mediated phosphorylation of RNA polymerase II carboxyl-terminal domain sequences. J Biol Chem 273(16):9534-8

Reference Help

Abstract


Saccharomyces cerevisiae Gal11, a component of the holoenzyme of RNA polymerase II, interacts through its functional domains A and B with the small (Tfa2) and large (Tfa1) subunits of the general transcription factor (TF) IIE, respectively. We have recently suggested that Gal11 functions through a common pathway with TFIIE in transcriptional regulation (Sakurai, H., and Fukasawa, T. (1997) J. Biol. Chem. 272, 32663-32669). Here, we report that the activity of the TFIIH-associated kinase, responsible for phosphorylation of the largest subunit of RNA polymerase II at the carboxyl-terminal domain (CTD), is enhanced cooperatively by Gal11 and TFIIE. The enhancement of CTD phosphorylation was observed in the holoenzyme of RNA polymerase II, but not in its core enzyme. The stimulatory effect was completely abolished in the absence of either domain B of Gal11 or the Tfa1 subunit of TFIIE, suggesting that the domain B-Tfa1 interaction is necessary, if not sufficient, for an extensive phosphorylation of the CTD by TFIIH. Stimulation of basal transcription by Gal11 was coupled with enhancement of TFIIH-catalyzed CTD phosphorylation in a cell-free transcription system, suggesting that Gal11 activates transcription by stimulating the CTD phosphorylation in the cell.

Reference Type
Journal Article
Authors
Sakurai H, Fukasawa T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference