Take our Survey

Reference: Li S, et al. (1999) Nucleotide excision repair in a constitutive and inducible gene of a yeast minichromosome in intact cells. Nucleic Acids Res 27(17):3610-20

Reference Help

Abstract


Repair of UV-induced cyclobutane pyrimidine dimers (CPDs) was measured in a yeast minichromosome, having a galactose-inducible GAL1:URA3 fusion gene, a constitutively expressed HIS3 gene and varied regions of chromatin structure. Transcription of GAL1:URA3 increased >150-fold, while HIS3 expression decreased <2-fold when cells were switched from glucose to galactose medium. Following galactose induction, four nucleosomes were displaced or rearranged in the GAL3-GAL10 region. However, no change in nucleosome arrangement was observed in other regions of the minichromosome following induction, indicating that only a few plasmid molecules actively transcribe at any one time. Repair at 269 cis-syn CPD sites revealed moderate preferential repair of the transcribed strand of GAL1:URA3 in galactose, consistent with transcription-coupled repair in a fraction of these genes. Many sites upstream of the transcription start site in the transcribed strand were also repaired faster upon induction. There is remarkable repair heterogeneity in the HIS3 gene and preferential repair is seen only in a short sequence immediately downstream of the transcription start site. Finally, a mild correlation of repair heterogeneity with nucleosome positions was observed in the transcribed strand of the inactive GAL1:URA3 gene and this correlation was abolished upon galactose induction.

Reference Type
Journal Article
Authors
Li S, Livingstone-Zatchej M, Gupta R, Meijer M, Thoma F, Smerdon MJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference