Reference: Shibata T, et al. (1995) Multi-site-specific endonucleases and the initiation of homologous genetic recombination in yeast. Adv Biophys 31:77-91

Reference Help

Abstract


The notion that homologous recombination is a regulated biological process is not a familiar one. In yeasts, homologous recombination and most site-specific ones are initiated by site-specific double-stranded breaks that are introduced within cis-acting elements for the recombination. On the other hand, yeasts have a group of site-specific endonucleases (multi-site-specific endonucleases) that have a number of cleavage sites on each DNA. One of them, Endo.SceI of S. cerevisiae, was shown to introduce double-stranded breaks at a number of well-defined sites on the mitochondrial DNA in vivo. An Endo.SceI-induced double-stranded break was demonstrated to induce homologous recombination in mitochondria. Like the case of homologous recombination of nuclear chromosomes, the double-stranded break induces gene conversion of both genetic markers flanking and in the proximity of the cleavage site, and the cleaved DNA acts as a recipient of genetic information from the uncleaved partner DNA. The 70 kDa-heat-shock protein (HSP70)-subunit of Endo.SceI and a general role of the HSP70 in the regulation of protein-folding suggest the regulation of nucleolytic activity of Endo.SceI.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Shibata T, Nakagawa K, Morishima N
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference