Reference: Harrington LA and Andrews BJ (1996) Binding to the yeast SwI4,6-dependent cell cycle box, CACGAAA, is cell cycle regulated in vivo. Nucleic Acids Res 24(4):558-65

Reference Help

Abstract


In Saccharomyces cerevisiae commitment to cell division occurs late in the G1 phase of the cell cycle at a point called Start and requires the activity of the Cdc28 protein kinase and its associated G1 cyclins. The Swi4,6-dependent cell cycle box binding factor, SBF, is important for maximal expression of the G1 cyclin and HO endonuclease genes at Start. The cell cycle regulation of these genes is modulated through an upstream regulatory element termed the SCB (SwI4,6-dependent cell cycle box, CACGAAA), which is dependent on both SWI4 and SWI6. Although binding of SWI4 and SWI6 to SCB sequences has been well characterized in vitro, the binding of SBF in vivo has not been examined. We used in vivo dimethyl sulfate footprinting to examine the occupancy of SCB sequences throughout the cell cycle. We found that binding to SCB sequences occurred in the G1 phase of the cell cycle and was greatly reduced in G2. In the absence of either SWI4 or SWI6, SCB sequences were not occupied at any cell cycle stage. These results suggest that the G1-specific expression of SCB-dependent genes is regulated at the level of DNA binding in vivo.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Harrington LA, Andrews BJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference