Reference: Piper RC, et al. (1994) Yeast Vps45p is a Sec1p-like protein required for the consumption of vacuole-targeted, post-Golgi transport vesicles. Eur J Cell Biol 65(2):305-18

Reference Help

Abstract


Over 45 VPS genes (vacuolar protein sorting) in Saccharomyces cerevisiae are necessary for the correct sorting and delivery of vacuolar hydrolases. Yeast strains carrying mutations in a subset of these VPS genes (class D vps mutants) are also defective in the segregation of vacuolar material into the developing daughter cell and are morphologically characterized by having large central vacuoles. The class D VPS gene products, which include a Rab5 homologue (VPS21/YPT51) and a syntaxin homologue (PEP12/VPS6), have been proposed to function together at a particular step along the vacuolar protein sorting pathway. We have cloned another class D VPS gene, VPS45, which is homologous to a growing family of genes that encode Sec1p-like proteins. Vps45p is predicted to be a hydrophilic protein of 577 amino acids with a molecular mass of 67 kDa. Fractionation studies show that Vps45p is a peripheral membrane protein that cofractionates with Golgi-like membranes, consistent with Vps45p functioning in membrane traffic between the Golgi and the vacuole. Using a temperature-sensitive allele of VPS45, we show that inactivation of Vps45p causes the rapid accumulation of small (40-60 nm) vesicles and secretion of the vacuolar hydrolase carboxypeptidase Y. Because the entire yeast secretory pathway is functional after the temperature-induced inactivation of Vps45p, we conclude that the accumulated vesicles represent transport intermediates between the Golgi and the vacuole.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Piper RC, Whitters EA, Stevens TH
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference