Reference: Kreike J, et al. (1979) The identification of apocytochrome b as a mitochondrial gene product and immunological evidence for altered apocytochrome b in yeast strains having mutations in the COB region of mitochondrial DNA. Eur J Biochem 101(2):607-17

Reference Help

Abstract


The yeast mitochondrial translation product of Mr 30 000 is identical with apocytochrome b. After labelling in vivo with [35S]sulphate in the presence of cycloheximide, the radioactivity in this product present in solubilized submitochondrial particles, was completely recovered in pure cytochrome bc1 complex as a single polypeptide. We show that this translation product is identical with apocytochrome b using peptide mapping by limited proteolysis according to Cleveland et al. [J. Biol. Chem. 250 (1977) 8236-8242] and by immunoprecipitation with a specific antiserum against apocytochrome b. New mitochondrial translation products in 36 strains of Saccharomyces cerevisiae having mutations in the COB region of the mitochondrial DNA, are precipitated by this antiserum. This is consistent with the assumption that many of the cob mutations are localized in the structural gene for apolcytochrome b on mitochondrial DNA. Mutations in two intervening sequences can give rise to products related to apocytochrome b that are considerably longer than normal apocytochrome b. We discuss the hypothesis that in these mutants splicing of the messenger RNA does not occur correctly and that, as a consequence of this, ribosomes read through in an intervening sequence.

Reference Type
Journal Article
Authors
Kreike J, Bechmann H, Van Hemert FJ, Schweyen RJ, Boer PH, Kaudewitz F, Groot GS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference