Take our Survey

Reference: Haas H, et al. (1997) Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J Biol Chem 272(36):22576-82

Reference Help

Abstract

To investigate the mechanism of nitrogen metabolite repression in the biotechnologically important fungus Penicillium chrysogenum a polymerase chain reaction approach was employed to identify transcription factors involved in this regulatory circuit, leading to the isolation of a new gene (nreB) encoding a 298 amino acid protein. Despite a low overall amino acid sequence identity of approximately 30%, it shares several features with Dal80p/Uga43p and Gzf3p/Nil2p, both repressors in nitrogen metabolism in Saccharomyces cerevisiae. All three proteins contain an N-terminal GATA-type zinc finger motif, displaying 86% amino acid sequence identity, and a putative leucine zipper motif in the C terminus. Northern blot analysis revealed the presence of two nreB transcripts, 1.8 and 1.5 kilobases in length, that differ in polyadenylation sites. The steady state level of both transcripts is subject to nitrogen metabolite repression. The putative DNA binding domain of NREB, expressed as a fusion protein in Escherichia coli, binds in vitro to GATA sites of its own 5'-upstream region as well as in the promoter of the nitrate assimilation gene cluster. Consistent with a role in the regulation of nitrogen metabolism, overexpression of nreB leads to repression of nitrate assimilatory genes. Hence, the simple view of nitrogen regulation by four GATA factors in yeast, but only one key regulator in filamentous ascomycetes seems no longer valid.

Reference Type
Journal Article
Authors
Haas H, Angermayr K, Zadra I, Stoffler G
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference