Reference: Dickson RC, et al. (1997) Synthesis of mannose-(inositol-P)2-ceramide, the major sphingolipid in Saccharomyces cerevisiae, requires the IPT1 (YDR072c) gene. J Biol Chem 272(47):29620-5

Reference Help

Abstract


Knowledge of the Saccharomyces cerevisiae genes and proteins necessary for sphingolipid biosynthesis is far from complete. Such information should expedite studies of pathway regulation and sphingolipid functions. Using the Aur1 protein sequence, recently identified as necessary for synthesis of the sphingolipid inositol-P-ceramide (IPC), we show that a homolog (open reading frame YDR072c), termed Ipt1 (inositolphosphotransferase 1) is necessary for synthesis of mannose-(inositol-P)2-ceramide (M(IP)2C), the most abundant and complex sphingolipid in S. cerevisiae. This conclusion is based upon analysis of an ipt1-deletion strain, which fails to accumulate M(IP)2C and instead accumulates increased amounts of the precursor mannose-inositol-P-ceramide. The mutant also fails to incorporate radioactive precursors into M(IP)2C, and membranes prepared from it do not incorporate [3H-inositol]phosphatidylinositol into M(IP)2C, indicating a lack of M(IP)2C synthase activity (putatively phosphatidylinositol:mannose-inositol-P-ceramide phosphoinositol transferase). M(IP)2C synthase activity is inhibited in the micromolar range by aureobasidin A, but drug sensitivity is over 1000-fold lower than reported for IPC synthase activity. An ipt1-deletion mutant has no severe phenotypic effects but is slightly more resistant to growth inhibition by calcium ions. Identification of the IPT1 gene should be helpful in determining the function of the M(IP)2C sphingolipid and in determining the catalytic mechanism of IPC and M(IP)2C synthases.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Dickson RC, Nagiec EE, Wells GB, Nagiec MM, Lester RL
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference