Take our Survey

Reference: Sugiyama K, et al. (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 275(20):15535-40

Reference Help

Abstract


Glutathione is synthesized in two sequential reactions catalyzed by gamma-glutamylcysteine synthetase (GSH1 gene product) and glutathione synthetase (GSH2 gene product). The expression of GSH1 in Saccharomyces cerevisiae has been known to be up-regulated by Yap1p, a critical transcription factor for the oxidative stress response in yeast. The present study demonstrates that GSH2 expression is also regulated by Yap1p under oxidative stress-induced conditions. In addition to oxidative stress, expression of GSH1 and GSH2 was induced by heat shock stress in a Yap1p-dependent manner with subsequent increases in intracellular glutathione content. Oxygen respiration rate increased when cells were exposed to higher temperatures, and as a result, intracellular oxidation levels were increased. The heat shock-induced expression of GSH1 and GSH2 did not occur under anaerobic conditions. Furthermore, even under aerobic conditions, the heat shock response of these genes was not observed when cells were pretreated with KCN to block oxygen respiration. We speculate that heat shock stress enhances oxygen respiration, which in turn results in an increase in the generation of reactive oxygen species in mitochondria. This signal may be mediated by Yap1p, resulting in the elevation of intracellular glutathione levels.

Reference Type
Journal Article
Authors
Sugiyama K, Izawa S, Inoue Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference