Take our Survey

Reference: Shaw JA, et al. (1991) The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol 114(1):111-23

Reference Help

Abstract


The morphology of three Saccharomyces cerevisiae strains, all lacking chitin synthase 1 (Chs1) and two of them deficient in either Chs3 (calR1 mutation) or Chs2 was observed by light and electron microscopy. Cells deficient in Chs2 showed clumpy growth and aberrant shape and size. Their septa were very thick; the primary septum was absent. Staining with WGA-gold complexes revealed a diffuse distribution of chitin in the septum, whereas chitin was normally located at the neck between mother cell and bud and in the wall of mother cells. Strains deficient in Chs3 exhibited minor abnormalities in budding pattern and shape. Their septa were thin and trilaminar. Staining for chitin revealed a thin line of the polysaccharide along the primary septum; no chitin was present elsewhere in the wall. Therefore, Chs2 is specific for primary septum formation, whereas Chs3 is responsible for chitin in the ring at bud emergence and in the cell wall. Chs3 is also required for chitin synthesized in the presence of alpha-pheromone or deposited in the cell wall of cdc mutants at nonpermissive temperature, and for chitosan in spore walls. Genetic evidence indicated that a mutant lacking all three chitin synthases was inviable; this was confirmed by constructing a triple mutant rescued by a plasmid carrying a CHS2 gene under control of a GAL1 promoter. Transfer of the mutant from galactose to glucose resulted in cell division arrest followed by cell death. We conclude that some chitin synthesis is essential for viability of yeast cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Shaw JA, Mol PC, Bowers B, Silverman SJ, Valdivieso MH, Duran A, Cabib E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference