Reference: Silveira LA, et al. (1990) Yeast clathrin has a distinctive light chain that is important for cell growth. J Cell Biol 111(4):1437-49

Reference Help

Abstract


The structure and physiologic role of clathrin light chain has been explored by purification of the protein from Saccharomyces cerevisiae, molecular cloning of the gene, and disruption of the chromosomal locus. The single light chain protein from yeast shares many physical properties with the mammalian light chains, in spite of considerable sequence divergence. Within the limited amino acid sequence identity between yeast and mammalian light chains (18% overall), three regions are notable. The carboxy termini of yeast light chain and mammalian light chain LCb are 39% homologous. Yeast light chain contains an amino-terminal region 45% homologous to a domain that is completely conserved among mammalian light chains. Lastly, a possible homolog of the tissue-specific insert of LCb is detected in the yeast gene. Disruption of the yeast gene (CLC1) leads to a slow-growth phenotype similar to that seen in strains that lack clathrin heavy chain. However, light chain gene deletion is not lethal to a strain that cannot sustain a heavy chain gene disruption. Light chain-deficient strains frequently give rise to variants that grow more rapidly but do not express an immunologically related light chain species. These properties suggest that clathrin light chain serves an important role in cell growth that can be compensated in light chain deficient cells.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Silveira LA, Wong DH, Masiarz FR, Schekman R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference