Reference: Coffman JA and Cooper TG (1997) Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae. J Bacteriol 179(17):5609-13

Reference Help

Abstract


The expression of most nitrogen catabolic genes in Saccharomyces cerevisiae is regulated at the level of transcription in response to the quality of nitrogen source available. This regulation is accomplished through four GATA-family transcription factors: two positively acting factors capable of transcriptional activation (Gln3p and Gat1p) and two negatively acting factors capable of down-regulating Gln3p- and/or Gat1p-dependent transcription (Dal80p and Deh1p). Current understanding of nitrogen-responsive transcriptional regulation is the result of extensive analysis of genes required for the catabolism of small molecules, e.g., amino acids, allantoin, or ammonia. However, cells contain another, equally important source of nitrogen, intracellular protein, which undergoes rapid turnover during special circumstances such as entry into stationary phase, and during sporulation. Here we show that the expression of some (CPS1, PEP4, PRB1, and LAP4) but not all (PRC1) vacuolar protease genes is nitrogen catabolite repression sensitive and is regulated by the GATA-family proteins Gln3p, Gat1p, and Dal80p. These observations extend the global participation of GATA-family transcription factors to include not only well-studied genes associated with the catabolism of small nitrogenous compounds but also genes whose products are responsible for the turnover of intracellular macromolecules. They also point to the usefulness of considering control of the nitrogen-responsive GATA factors when studying the regulation of the protein turnover machinery.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Coffman JA, Cooper TG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference