Take our Survey

Reference: Hu GZ and Ronne H (1994) Yeast BTF3 protein is encoded by duplicated genes and inhibits the expression of some genes in vivo. Nucleic Acids Res 22(14):2740-3

Reference Help

Abstract


BTF3 is a human protein that is thought to be involved in transcription by RNA polymerase II [Zheng et al., Cell 50, 361-368, 1987]. A yeast homologue of BTF3, Egd1p, has been identified by its ability to enhance DNA binding of the Gal4p activator [Parthun et al., Mol. Cell. Biol. 12, 5683-5689, 1992]. We have cloned a second yeast gene, BTT1, which also encodes a BTF3 homologue. Btt1p and Egd1p are highly similar in sequence, which suggests that they are duplicated proteins with similar functions. Gene disruptions were used to investigate the function of the two proteins. Consistent with published results, we found that loss of EGD1 causes a minor defect in GAL gene induction. Loss of BTT1 has little if any effect. Surprisingly, we found that cells which lack both genes instead express the GAL1 and GAL10 mRNAs at much higher levels than wild type cells. This suggests that BTF3 really plays a negative role in GAL gene expression. Further experiments revealed that expression of the ACT1 and SSO1 genes also is elevated in cells that lack EGD1 and BTT1. In contrast, expression of rRNA and tRNA was not affected. We conclude that Btt1p and Egd1p have redundant functions in vivo, and that they exert a negative effect on the expression of several genes that are transcribed by RNA polymerase II.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Comparative Study
Authors
Hu GZ, Ronne H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference