Reference: TerBush DR and Novick P (1995) Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J Cell Biol 130(2):299-312

Reference Help

Abstract


In the yeast Saccharomyces cerevisiae, the products of at least 14 genes are involved specifically in vesicular transport from the Golgi apparatus to the plasma membrane. Two of these genes, SEC8 and SEC15, encode components of a 1-2-million D multi-subunit complex that is found in the cytoplasm and associated with the plasma membrane. In this study, oligonucleotide-directed mutagenesis is used to alter the COOH-terminal portion of Sec8 with a 6-histidine tag, a 9E10 c-myc epitope, or both, to allow the isolation of the Sec8/15 complex from yeast lysates either by immobilized metal affinity chromatography or by immunoprecipitation. Sec6 cofractionates with Sec8/15 by immobilized metal affinity chromatography, gel filtration chromatography, and by sucrose velocity centrifugation. Sec6 and Sec15 coimmunoprecipitate from lysates with c-myc-tagged Sec8. These data indicate that the Sec8/15 complex contains Sec6 as a stable component. Additional proteins associated with Sec6/8/15 were identified by immunoprecipitations from radiolabeled lysates. The entire Sec6/8/15 complex contains at least eight polypeptides which range in molecular mass from 70 to 144 kD. Yeast strains containing temperature sensitive mutations in the SEC genes were also transformed with the SEC8-c-myc-6-histidine construct and analyzed by immunoprecipitation. The composition of the Sec6/8/15 complex is disrupted specifically in the sec3-2, sec5-24, and sec10-2 strain backgrounds. The c-myc-Sec8 protein is localized by immunofluorescence to small bud tips indicating that the Sec6/8/15 complex may function at sites of exocytosis.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
TerBush DR, Novick P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference