Reference: Ziegelhoffer T, et al. (1995) The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates. J Biol Chem 270(18):10412-9

Reference Help

Abstract


hsp70 proteins of both eukaryotes and prokaryotes possess both ATPase and peptide binding activities. These two activities are crucial for the chaperone activity of hsp70 proteins. The activity of DnaK, the primary hsp70 of Escherichia coli, is modulated by the GrpE and DnaJ proteins. In the yeast Saccharomyces cerevisiae, the predominant cytosolic hsp70, Ssa1p, interacts with a DnaJ homologue, Ydj1p. In order to better understand the function of the Ssa1p/Ydj1p chaperone, the effects of polypeptide substrates and Ydj1p on Ssa1p ATPase activity were assessed using a combination of steady-state kinetic analysis and single turnover substrate hydrolysis experiments. Polypeptide substrates and Ydj1p both serve to stimulate ATPase activity of Ssa1p. The two types of effector are biochemically distinct, each conferring a characteristic K+ dependence on Ssa1p ATPase activity. However, in single turnover ATP hydrolysis experiments, both polypeptide substrates and Ydj1p destabilized the ATP.Ssa1p complex through a combination of accelerated hydrolysis of bound ATP and accelerated release of ATP from Ssa1p. The acceleration of ATP release by Ydj1p is a previously unidentified function of a DnaJ homologue. In the case of Ydj1p-stimulated Ssa1p, steady-state ATPase activity is increased less than 2-fold at physiological K+ concentrations, despite a 15-fold increase in the hydrolysis of bound ATP. The primary effect of Ydj1p appears to be to disfavor an ATP form of Ssa1p. On the other hand, peptide stimulation of Ssa1p ATPase activity was enhanced at physiological K+ concentrations, supporting the idea that cycles of ATP hydrolysis play an important role in the interaction of hsp70 with polypeptide substrates. The enhanced ATP dissociation caused by both polypeptide substrates and Ydj1p may play a role in the regulation of Ssa1p chaperone activity by altering the relative abundance of ATP-and ADP-bound forms.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Ziegelhoffer T, Lopez-Buesa P, Craig EA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference