Reference: Zhao J, et al. (1997) Cleavage factor II of Saccharomyces cerevisiae contains homologues to subunits of the mammalian Cleavage/ polyadenylation specificity factor and exhibits sequence-specific, ATP-dependent interaction with precursor RNA. J Biol Chem 272(16):10831-8

Reference Help

Abstract


Cleavage of pre-mRNA during 3'-end formation in yeast requires two protein factors, cleavage factor I (CF I) and cleavage factor (CF II). A 5300-fold purification of CF II indicates that four polypeptides of 150, 105, 100, and 90 kDa copurify with CF II activity. The 150-kDa protein is recognized by antibodies against Cft1, the yeast homologue of the 160-kDa subunit of the mammalian cleavage/polyadenylation specificity factor (CPSF). The 100-kDa subunit is identical to Brr5/Ysh1, a yeast protein with striking similarity to the 73-kDa subunit of CPSF. The 105-kDa protein, designated Cft2 (cleavage factor two) exhibits significant homology to the CPSF 100-kDa subunit. Cft2 is cross-linked to pre-mRNA substrate containing the poly(A) site and wild type upstream and downstream flanking sequences, but not to precleaved RNA lacking downstream sequences or to substrate in which the (UA)6 processing signal has been deleted. The specific binding of Cft2 to the RNA substrate is ATP-dependent, in agreement with the requirement of ATP for cleavage. The sequence-specific binding of Cft2 and the similarities of CF II subunits to those of CPSF supports the hypothesis that CF II functions in the cleavage of yeast mRNA 3'-ends in a manner analagous to that of CPSF in the mammalian system. These results provide additional evidence that certain features of the molecular mechanism of mRNA 3'-end formation are conserved between yeast and mammals, but also highlight unexpected differences.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Zhao J, Kessler MM, Moore CL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference