Take our Survey

Reference: Igual JC, et al. (1996) Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J 15(18):5001-13

Reference Help

Abstract


Specific transcription in late G1, mediated by the transcription factors SBF (Swi4p-Swi6p) and MBF (Mbp1p-Swi6p), is crucial for cell cycle progression in budding yeast. In order to better understand the G1/S transition, we initiated a search for conditional mutations synthetic lethal with swi4delta. One of the isolated mutants, rsf8swi4delta, showed a growth defect due to cell lysis. rsf8 is allelic to PKC1, encoding a protein kinase C homologue which controls cell integrity. In the presence of the rsf8/(pkc1-8) mutation, a functional SBF but not MBF is required for viability. Importantly, swi4delta and swi6delta strains are hypersensitive to calcofluor white and SDS, indicating that they possess a weakened cell wall. Overexpression or ectopic expression of CLN did not suppress the pkc1-8swi4delta mutant phenotype, thus SBF must control cell integrity independently, rather than acting through CLN expression. We found that at least six genes involved in cell wall biosynthesis are periodically expressed at the G1/S phase boundary. In all six cases, cell cycle-regulated expression is due mainly to Swi4p. Finally, we found that the PKC1 MAP kinase pathway is a positive regulator of five of these cell wall genes, these genes being novel targets of regulation by this pathway. We suggest that SBF and the PKC1 MAP kinase pathway act in concert to maintain cell integrity during bud formation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Igual JC, Johnson AL, Johnston LH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference