Reference: Arvanitidis A and Heinisch JJ (1994) Studies on the function of yeast phosphofructokinase subunits by in vitro mutagenesis. J Biol Chem 269(12):8911-8

Reference Help

Abstract


Genetic and biochemical analysis of phosphofructokinase in the yeast Saccharomyces cerevisiae led to contradictory hypotheses about the function of the subunits of this heterooctameric enzyme. To gain further insight, we exchanged four evolutionary conserved amino acid residues in each of the two yeast subunits affecting presumed catalytic and regulatory functions. In conjunction with a complementary wild-type subunit, each of the mutant subunits led to a loss of a maximum of 50% of phosphofructokinase activity as compared to wild-type cells. Km values for fructose 6-phosphate were increased in most of these mutants. None of the mutant subunits lacking catalytical functions was able to complement the glucose-negative phenotype of a yeast pfk1 pfk2 double mutant when expressed from a single-copy vector. For the beta-subunits, the other mutants did complement, whereas for the alpha-subunits they did not. Concentrations of fructose 1,6-bisphosphate did not drastically change in metabolite determinations in strains carrying one mutant allele, suggesting that the effect of the mutations introduced can be largely compensated by in vivo regulatory mechanisms, as long as one functional subunit is present. The data implicate that each of the yeast phosphofructokinase subunits can serve catalytically as well as regulatory functions.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Arvanitidis A, Heinisch JJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference