Reference: Kressler D, et al. (1999) Synthetic lethality with conditional dbp6 alleles identifies rsa1p, a nucleoplasmic protein involved in the assembly of 60S ribosomal subunits. Mol Cell Biol 19(12):8633-45

Reference Help

Abstract


Dbp6p is an essential putative ATP-dependent RNA helicase that is required for 60S-ribosomal-subunit assembly in the yeast Saccharomyces cerevisiae (D. Kressler, J. de la Cruz, M. Rojo, and P. Linder, Mol. Cell. Biol. 18:1855-1865, 1998). To identify factors that are functionally interacting with Dbp6p, we have performed a synthetic lethal screen with conditional dbp6 mutants. Here, we describe the cloning and the phenotypic analysis of the previously uncharacterized open reading frame YPL193W, which we renamed RSA1 (ribosome assembly 1). Rsa1p is not essential for cell viability; however, rsa1 null mutant strains display a slow-growth phenotype, which is exacerbated at elevated temperatures. The rsa1 null allele synthetically enhances the mild growth defect of weak dbp6 alleles and confers synthetic lethality when combined with stronger dbp6 alleles. Polysome profile analysis shows that the absence of Rsa1p results in the accumulation of half-mer polysomes. However, the pool of free 60S ribosomal subunits is only moderately decreased; this is reminiscent of polysome profiles from mutants defective in 60S-to-40S subunit joining. Pulse-chase labeling of pre-rRNA in the rsa1 null mutant strain indicates that formation of the mature 25S rRNA is decreased at the nonpermissive temperature. Interestingly, free 60S ribosomal subunits of a rsa1 null mutant strain that was grown for two generations at 37 degrees C are practically devoid of the 60S-ribosomal-subunit protein Qsr1p/Rpl10p, which is required for joining of 60S and 40S subunits (D. P. Eisinger, F. A. Dick, and B. L. Trumpower, Mol. Cell. Biol. 17:5136-5145, 1997). Moreover, the combination of the Deltarsa1 and qsr1-1 mutations leads to a strong synthetic growth inhibition. Finally, a hemagglutinin epitope-tagged Rsa1p localizes predominantly to the nucleoplasm. Together, these results point towards a function for Rsa1p in a late nucleoplasmic step of 60S-ribosomal-subunit assembly.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Kressler D, Doère M, Rojo M, Linder P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference