Take our Survey

Reference: Kim UJ, et al. (1988) Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. EMBO J 7(7):2211-9

Reference Help

Abstract


We have constructed a yeast strain (UKY403) in which the sole histone H4 gene is under control of the GAL1 promoter. This allows the activation of H4 mRNA synthesis on galactose and its repression on glucose. UKY403 cells, pre-synchronized in G1 with alpha-mating factor, have been used to show that glucose treatment results in the loss of approximately half the chromosomal nucleosomes. This depletion is only partially reversible when the H4 gene is reactivated on galactose. It was found that the resultant lethality manifests itself first in S phase, the period of nucleosome assembly, but leads to highly synchronous arrest in G2 and a virtually complete block in chromosomal segregation. Histone H4-depleted chromatin was analyzed for its efficiency as a template for all three RNA polymerases. Using pulse-labeling, we find no evidence for altered transcription by RNA polymerase I (25S, 18S and 5.8S rRNAs) or RNA polymerase III (5S rRNA, tRNAs). Northern blot analysis was used to measure levels of RNA polymerase II transcripts. There was little effect on the activation or repression of the CUP1 chelatin gene. While there may be some decrease in the level of certain mRNAs (e.g. HIS4, ARG4) other message levels (HIS3, TRP1) show little change upon glucose repression. Therefore, nucleosome loss certainly does not have a general effect on transcription.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Kim UJ, Han M, Kayne P, Grunstein M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference