Take our Survey

Reference: Ackerman SH, et al. (1992) Characterization of ATP11 and detection of the encoded protein in mitochondria of Saccharomyces cerevisiae. J Biol Chem 267(11):7386-94

Reference Help

Abstract

In Saccharomyces cerevisiae, expression of functional F1-ATPase requires two proteins encoded by the ATP11 and ATP12 genes. Mutations in either gene block some crucial late step in assembly of F1, causing the alpha and beta subunits to accumulate in mitochondria as inactive aggregates (Ackerman, S. H., and Tzagoloff, A. (1991) Proc. Natl. Acad. Sci. U.S.A. 87, 4986-4990). In the present study we have cloned and determined the sequence of ATP11. The encoded product is protein of 37 kDa with no obvious homology to any known protein. In vitro import assays of ATP11 precursor and immunochemical evidence indicate that the protein is located in mitochondria. A fusion was made between ATP11 and a short sequence coding for 78 amino acids with the biotination signal of bacterial transcarboxylase. The protein expressed from this construct complements atp11 mutants, indicating that the addition of the extra 78 amino acids at the carboxyl terminus of the ATP11 protein does not compromise its function. The hybrid protein is detected in mitochondria with antibodies and with peroxidase-conjugated avidin. Biotinated ATP11 protein can be partially purified by affinity chromatography on monomeric or tetrameric avidin coupled to Sepharose. A fraction eluted from the avidin column and enriched for the biotinated ATP11 protein also contains the alpha and beta subunits of F1-ATPase.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Ackerman SH, Martin J, Tzagoloff A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference