Take our Survey

Reference: Mauri I, et al. (1993) Functional expression of the transcriptional activator Opaque-2 of Zea mays in transformed yeast. Mol Gen Genet 241(3-4):319-26

Reference Help

Abstract

The aim of this research was to determine whether the structural homology between the O2 gene, a maize transcriptional activator, and the GCN4 gene, a yeast transcriptional factor, is reflected at the level of function. The O2 cDNA was cloned in the yeast expression vector pEMBLyex4 under the control of a hybrid inducible promoter, and used to transform the yeast Saccharomyces cerevisiae. Transformed yeast cells produced O2 mRNA and a polypeptide immunoreactive with anti-O2 antibodies during growth in galactose. The heterologous protein was correctly translocated into the yeast nuclei, as demonstrated by immunofluorescence, indicating that the nuclear targeting sequences of maize are recognized by yeast cells. Further experiments demonstrated the ability of O2 to rescue a gcn4 mutant grown in the presence of aminotriazole, an inhibitor of the HIS3 gene product, suggesting that O2 activates the HIS3 gene, gene normally under control of GCN4. It was shown that the O2 protein is able to trans-activate the HIS4 promoter in yeast cells and binds to it in vitro. The sequence protected by O2, TGACTC, is also the binding site for GCN4. Finally, the expression of O2 protein in yeast did not produce alterations during batch growth at 30 degrees C, while transformants expressing O2 protein showed a conditionally lethal phenotype when grown in galactose at 36 degrees C; this phenotype mimics the behaviour of gcd mutants. The results support the idea that basic mechanisms of transcription control have been highly conserved in eukaryotes.

Reference Type
Journal Article
Authors
Mauri I, Maddaloni M, Lohmer S, Motto M, Salamini F, Thompson R, Martegani E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference