Reference: Finbow ME, et al. (1994) Evidence that the 16 kDa proteolipid (subunit c) of the vacuolar H(+)-ATPase and ductin from gap junctions are the same polypeptide in Drosophila and Manduca: molecular cloning of the Vha16k gene from Drosophila. J Cell Sci 107 ( Pt 7)(7):1817-24

Reference Help

Abstract


The 16 kDa proteolipid (subunit c) of the eukaryotic vacuolar H(+)-ATPase (V-ATPase) is closely related to the ductin polypeptide that forms the connexon channel of gap junctions in the crustacean Nephrops norvegicus. Here we show that the major protein component of Manduca sexta gap junction preparations is a 16 kDa polypeptide whose N-terminal sequence is homologous to ductin and is identical to the deduced sequence of a previously cloned cDNA from Manduca (Dow et al., Gene, 122, 355-360, 1992). We also show that a Drosophila melanogaster cDNA, highly homologous to the Manduca cDNA, can rescue Saccharomyces cerevisiae, defective in V-ATPase function, in which the corresponding yeast gene, VMA3, has been inactivated. Evidence is presented for a single genetic locus (Vha16) in Drosophila, which in adults at least contains a single transcriptional unit. Taken together, the data suggest that in Drosophila and Manduca, the same polypeptide is both the proteolipid subunit c component of the V-ATPase and the ductin component of gap junctions. The intron/exon structure of the Drosophila Vha16 is identical to that of a human Vha16 gene, and is consistent with an ancient duplication of an 8 kDa domain. A pilot study for gene inactivation shows that transposable P-elements can be easily inserted into the Drosophila ductin Vha16 gene. Although without phenotypic consequences, these can serve as a starting point for generation of null alleles.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Finbow ME, Goodwin SF, Meagher L, Lane NJ, Keen J, Findlay JB, Kaiser K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference