Reference: Fabrizio P, et al. (1997) An evolutionarily conserved U5 snRNP-specific protein is a GTP-binding factor closely related to the ribosomal translocase EF-2. EMBO J 16(13):4092-106

Reference Help

Abstract


The driving forces behind the many RNA conformational changes occurring in the spliceosome are not well understood. Here we characterize an evolutionarily conserved human U5 small nuclear ribonucleoprotein (snRNP) protein (U5-116kD) that is strikingly homologous to the ribosomal elongation factor EF-2 (ribosomal translocase). A 114 kDa protein (Snu114p) homologous to U5-116kD was identified in Saccharomyces cerevisiae and was shown to be essential for yeast cell viability. Genetic depletion of Snu114p results in accumulation of unspliced pre-mRNA, indicating that Snu114p is essential for splicing in vivo. Antibodies specific for U5-116kD inhibit pre-mRNA splicing in a HeLa nuclear extract in vitro. In HeLa cells, U5-116kD is located in the nucleus and colocalizes with snRNP-containing subnuclear structures referred to as speckles. The G domain of U5-116kD/Snu114p contains the consensus sequence elements G1-G5 important for binding and hydrolyzing GTP. Consistent with this, U5-116kD can be cross-linked specifically to GTP by UV irradiation of U5 snRNPs. Moreover, a single amino acid substitution in the G1 sequence motif of Snu114p, expected to abolish GTP-binding activity, is lethal, suggesting that GTP binding and probably GTP hydrolysis is important for the function of U5-116kD/Snu114p. This is to date the first evidence that a G domain-containing protein plays an essential role in the pre-mRNA splicing process.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Fabrizio P, Laggerbauer B, Lauber J, Lane WS, Luhrmann R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference