Reference: Zakian VA, et al. (1986) Size threshold for Saccharomyces cerevisiae chromosomes: generation of telocentric chromosomes from an unstable minichromosome. Mol Cell Biol 6(3):925-32

Reference Help

Abstract


A 9-kilobase pair CEN4 linear minichromosome constructed in vitro transformed Saccharomyces cerevisiae with high frequency but duplicated or segregated inefficiently in most cells. Stable transformants were only produced by events which fundamentally altered the structure of the minichromosome: elimination of telomeres, alteration of the centromere, or an increase of fivefold or greater in its size. Half of the stable transformants arose via homologous recombination between an intact chromosome IV and the CEN4 minichromosome. This event generated a new chromosome from each arm of chromosome IV. The other "arm" of each new chromosome was identical to one "arm" of the unstable minichromosome. Unlike natural yeast chromosomes, these new chromosomes were telocentric: their centromeres were either 3.9 or 5.4 kilobases from one end of the chromosome. The mitotic stability of the telocentric chromosome derived from the right arm of chromosome IV was determined by a visual assay and found to be comparable to that of natural yeast chromosomes. Both new chromosomes duplicated, paired, and segregated properly in meiosis. Moreover, their structure, as deduced from mobilities in orthogonal field gels, did not change with continued mitotic growth or after passage through meiosis, indicating that they did not give rise to isochromosomes or suffer large deletions or additions. Thus, in S. cerevisiae the close spacing of centromeres and telomeres on a DNA molecule of chromosomal size does not markedly alter the efficiency with which it is maintained. Taken together these data suggest that there is a size threshold below which stable propagation of linear chromosomes is no longer possible.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Zakian VA, Blanton HM, Wetzel L, Dani GM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference