Take our Survey

Reference: Hill KL, et al. (1996) Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae. J Cell Biol 135(6 Pt 1):1535-49

Reference Help

Abstract

During cell division, cytoplasmic organelles are not synthesized de novo, rather they are replicated and partitioned between daughter cells. Partitioning of the vacuole in the budding yeast Saccharomyces cerevisiae is coordinated with the cell cycle and involves a dramatic translocation of a portion of the parental organelle from the mother cell into the bud. While the molecular mechanisms that mediate this event are unknown, the vacuole's rapid and directed movements suggest cytoskeleton involvement. To identify cytoskeletal components that function in this process, vacuole inheritance was examined in a collection of actin mutants. Six strains were identified as being defective in vacuole inheritance. Tetrad analysis verified that the defect cosegregates with the mutant actin gene. One strain with a deletion in a myosin-binding region was analyzed further. The vacuole inheritance defect in this strain appears to result from the loss of a specific actin function; the actin cytoskeleton is intact and protein targeting to the vacuole is normal. Consistent with these findings, a mutation in the actin-binding domain of Myo2p, a class V unconventional myosin, abolishes vacuole inheritance. This suggests that Myo2p serves as a molecular motor for vacuole transport along actin filaments. The location of actin and Myo2p relative to the vacuole membrane is consistent with this model. Additional studies suggest that the actin filaments used for vacuole transport are dynamic, and that profilin plays a critical role in regulating their assembly. These results present the first demonstration that specific cytoskeletal proteins function in vacuole inheritance.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Hill KL, Catlett NL, Weisman LS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference