Take our Survey

Reference: Xiao W and Samson L (1993) In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells. Proc Natl Acad Sci U S A 90(6):2117-21

Reference Help

Abstract


Three genes that participate in the repair of DNA alkylation damage were recently cloned from Saccharomyces cerevisiae: the MGT1 O6-methylguanine DNA methyltransferase gene, the MAG 3-methyladenine DNA glycosylase gene, and the APN1 apurinic/apyrimidinic (AP) endonuclease gene. Altering the expression levels of these three genes produced significant changes in the S. cerevisiae spontaneous mutation rate. Spontaneous mutation increased in the absence of the MGT1 DNA methyltransferase, presumably because unrepaired, spontaneously produced, O6-alkylguanine lesions mispair during replication. Moreover, changing the ratios of the MAG 3-methyladenine DNA glycosylase and the APN1 AP endonuclease had profound effects on spontaneous mutation rates. In the absence of APN1, the overexpression of MAG increased spontaneous mutation, and the underexpression of MAG decreased spontaneous mutation. We infer that the MAG glycosylase acts upon spontaneously produced 3-alkyladenine and 7-alkylguanine DNA lesions to produce mutagenic abasic sites, and that if the repair of these abasic sites is not initiated by the APN1 AP endonuclease they cause mutations during replication. Our results indicate that eukaryotic cells harbor endogenous metabolites that alkylate nuclear DNA at both oxygens and nitrogens.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Xiao W, Samson L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference