Reference: Albig W and Entian KD (1988) Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme. Gene 73(1):141-52

Reference Help

Abstract

Saccharomyces cerevisiae glucokinase (GLK) is the only described hexose-phosphorylating enzyme specific for aldo-hexoses. The gene was cloned by complementation of a triple mutant lacking all hexose-phosphorylating isoenzymes. Restriction sites were confirmed by genomic hybridization and GLK1 was mapped on chromosome III by ROFAGE, a method derived from the orthogonal field alteration gel electrophoresis. The mapping data were in agreement with previous genetic data. The open reading frame was established by two transcription start points in front of the initial ATG codon and by C-terminal beta-galactosidase fusions. The mRNA is 1.75 kb long and codes for 500 amino acid (aa) residues. Diversity of GLK from hexokinases PI and PII is very marked, with only 26 and 28% overall aa homology. A central core of about 350 aa shows 39% homology. No cross-hybridization could be observed by Southern hybridization. However, strong homologies were found over a range of 11 aa between glucokinase, yeast hexokinases (PI, PII) and rat hexokinase with 8 aa in common. These strongly conserved homologies give support to the view that this aa region corresponds to the binding site for glucose. Unlike all other hexose-phosphorylating enzymes, there is no proline residue indicating a conformational turn next to this glucokinase region. This finding may explain the failure of fructose phosphorylation. In both GLK and the hexokinases, a lysine residue is also conserved at aa position 110 which probably corresponds to the ATP-binding site. Additionally, a consensus sequence of 8 aa residues which is common for ATP-binding enzymes is conserved within the C-terminal part of GLK. The codon bias index for GLK1 is 0.25, which is very low compared with other glycolytic enzymes described so far. The gene is moderately expressed and constitutive on different carbon sources investigated. GLK1 null alleles had no detectable effects on sporulation and growth. Hence, a physiological role for GLK, which might explain its preservation, could not be detected under our laboratory test conditions.

Reference Type
Journal Article
Authors
Albig W, Entian KD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference