Reference: Boorstein WR and Craig EA (1990) Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae. J Biol Chem 265(31):18912-21

Reference Help

Abstract


SSA4 is the only one of five heat-inducible HSP70 genes in Saccharomyces cerevisiae whose expression is restricted to conditions of stress. Comparison of the nucleotide sequences of the SSA4 gene with other HSP70 genes indicates that it diverged from its most closely related yeast homologues hundreds of millions of years ago. However, a high degree of identity has been maintained between Ssa4p and other yeast 70-kDa heat-shock proteins at the amino acid level suggesting, in light of its distinct pattern of regulation, that it performs an important function. A 44-base pair region of the SSA4 promoter containing an extended match to the conserved eukaryotic heat-shock element (HSE) is necessary and sufficient to mediate heat-inducible regulation. HSESSA4 is capable of promoting only a low level of transcription under nonstress conditions. We present evidence in support of a revised definition of the functional HSE in S. cerevisiae, similar to the recently proposed modular Drosophila HSE. Elevated expression of several heat-shock proteins in an ssa1ssa2 double-mutant strain has previously been reported. The SSA4 promoter is activated in this strain. The increase in expression of SSA4 caused by deletion of these closely related genes is mediated via the same upstream activating sequences that activate transcription in response to heat shock. Activation of HSE-mediated transcription by disruption of constitutively expressed HSP70 genes supports an autoregulatory model of control of the heat-shock response.

Reference Type
Journal Article
Authors
Boorstein WR, Craig EA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference