Take our Survey

Reference: Randez-Gil F, et al. (1997) Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol Cell Biol 17(5):2502-10

Reference Help

Abstract


The Cat8p zinc cluster protein is essential for growth of Saccharomyces cerevisiae with nonfermentable carbon sources. Expression of the CAT8 gene is subject to glucose repression mainly caused by Mig1p. Unexpectedly, the deletion of the Mig1p-binding motif within the CAT8 promoter did not increase CAT8 transcription; moreover, it resulted in a loss of CAT8 promoter activation. Insertion experiments with a promoter test plasmid confirmed that this regulatory 20-bp element influences glucose repression and derepression as well. This finding suggests an upstream activating function of this promoter region, which is Mig1p independent, as delta mig1 mutants are still able to derepress the CAT8 promoter. No other putative binding sites such as a Hap2/3/4/5p site and an Abf1p consensus site were functional with respect to glucose-regulated CAT8 expression. Fusions of Cat8p with the Gal4p DNA-binding domain mediated transcriptional activation. This activation capacity was still carbon source regulated and depended on the Cat1p (Snf1p) protein kinase, which indicated that Cat8p needs posttranslational modification to reveal its gene-activating function. Indeed, Western blot analysis on sodium dodecyl sulfate-gels revealed a single band (Cat8pI) with crude extracts from glucose-grown cells, whereas three bands (Cat8pI, -II, and -III) were identified in derepressed cells. Derepression-specific Cat8pII and -III resulted from differential phosphorylation, as shown by phosphatase treatment. Only the most extensively phosphorylated modification (Cat8pIII) depended on the Cat1p (Snf1p) kinase, indicating that another protein kinase is responsible for modification form Cat8pII. The occurrence of Cat8pIII was strongly correlated with the derepression of gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and fructose-1,6-bisphosphatase) and gluconeogenic PCK1 mRNA. Furthermore, glucose triggered the dephosphorylation of Cat8pIII, but this did not depend on the Glc7p (Cid1p) phosphatase previously described as being involved in invertase repression. These results confirm our current model that glucose derepression of gluconeogenic genes needs Cat8p phosphorylation and additionally show that a still unknown transcriptional activator is also involved.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Randez-Gil F, Bojunga N, Proft M, Entian KD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference