Reference: Sanchirico ME, et al. (1998) Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J 17(19):5796-804

Reference Help

Abstract


The essential products of the yeast mitochondrial translation system are seven hydrophobic membrane proteins and Var1p, a hydrophilic protein in the small ribosomal subunit. Translation of the membrane proteins depends on nuclearly encoded, mRNA-specific translational activators that recognize the 5'-untranslated leaders of their target mRNAs. These translational activators are themselves membrane associated and could therefore tether translation to the inner membrane. In this study, we tested whether chimeric mRNAs with the untranslated sequences normally present on the mRNA encoding soluble Var1p, can direct functional expression of coding sequences specifying the integral membrane proteins Cox2p and Cox3p. DNA sequences specifying these chimeric mRNAs were inserted into mtDNA at the VAR1 locus and expressed in strains containing a nuclearly localized plasmid that supplies a functional form of Var1p, imported from the cytoplasm. Although cells expressing these chimeric mRNAs actively synthesized both membrane proteins, they were severely deficient in cytochrome c oxidase activity and in the accumulation of Cox2p and Cox3p, respectively. These data strongly support the physiological importance of interactions between membrane-bound mRNA-specific translational activators and the native 5'-untranslated leaders of the COX2 and COX3 mRNAs for localizing productive synthesis of Cox2p and Cox3p to the inner membrane.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Sanchirico ME, Fox TD, Mason TL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference